凸优化经典教材《convex optimization》—云知电平台-电气知识交流与技术合作平台
登录注册 微信
关注微信公众号
投诉建议 |       返回新版 >
NE牛顿眼
收藏        浏览2680     

凸优化经典教材《convex optimization》

为保护卖家利益,非实物交易不允许退款,请各位买家务必向卖家认真了解所购商品

价格:¥10.00

发货方式:邮件

类别:书籍视频 累计评价:7条

   库存2件   快递(1件0.00元)
联系卖家
    查看联系方式联系卖家
张海涛

手机邮箱身份证

所在地:西安市

邮箱:
QQ:

发站内信

资源描述 评价(7)

This book is about convex optimization, a special class of mathematical optimization
problems, which includes least-squares and linear programming problems. It
is well known that least-squares and linear programming problems have a fairly
complete theory, arise in a variety of applications, and can be solved numerically
very efficiently. The basic point of this book is that the same can be said for the
larger class of convex optimization problems.
While the mathematics of convex optimization has been studied for about a
century, several related recent developments have stimulated new interest in the
topic. The first is the recognition that interior-point methods, developed in the
1980s to solve linear programming problems, can be used to solve convex optimization
problems as well. These new methods allow us to solve certain new classes
of convex optimization problems, such as semidefinite programs and second-order
cone programs, almost as easily as linear programs.
The second development is the discovery that convex optimization problems
(beyond least-squares and linear programs) are more prevalent in practice than
was previously thought. Since 1990 many applications have been discovered in
areas such as automatic control systems, estimation and signal processing, communications
and networks, electronic circuit design, data analysis and modeling,
statistics, and finance. Convex optimization has also found wide application in combinatorial
optimization and global optimization, where it is used to find bounds on
the optimal value, as well as approximate solutions. We believe that many other
applications of convex optimization are still waiting to be discovered.
There are great advantages to recognizing or formulating a problem as a convex
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other special
methods for convex optimization. These solution methods are reliable enough to be
embedded in a computer-aided design or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dual
problem, for example, often has an interesting interpretation in terms of the original
problem, and sometimes leads to an efficient or distributed method for solving it.
We think that convex optimization is an important enough topic that everyone
who uses computational mathematics should know at least a little bit about it.
In our opinion, convex optimization is a natural next topic after advanced linear
algebra (topics like least-squares, singular values), and linear programming.
NE牛顿眼

NE电气微信扫一扫
更多电气资源等你分享

技术支持:晓电平台COPYRIGHT(c)沈阳知电科技有限公司 www.niudunyan.com 辽ICP备19011081号
联系电话:024-31371737

辽公网安备 21011202000391号